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A study is undertaken of both parallel flow and cross-flow in the viscous sublayer 
generated by a fluid streaming along a grooved surface, with the aim of clarifying the 
phenomena that underlie the reduction of turbulent drag by such surfaces. A 
quantitative characterization of the effectiveness of different groove profiles in 
retarding secondary cross-flow is given in terms of the difference of two ‘protrusion 
heights ’. Analytical calculations of limit cases and a boundary-element computer 
code for the analysis of general profiles are illustrated, and several examples are 
presented and discussed. 

1. Introduction 
1.1.  Drag reduction by means of grooved surfaces 

In the quest for drag reduction in internal and external flows three methods seem to 
be the major contenders today (Bushnell 1983 ; Trigui & Guezennec 1990) : delaying 
separation of the boundary layer by triggering an early transition to turbulent flow 
or otherwise affecting the boundary layer by injection or suction of fluid; modifying 
the viscosity of the fluid in the boundary layer by injection of a suitable different 
fluid or by changing its temperature; and shaping the wall with grooves (or riblets, 
depending on the way one wishes to see them) cut along the main flow direction. 

Of these methods the first is technologically the most advanced, having been in use 
for a long time in airplane wings in at  least some form; and the second has been 
proposed mainly for internal flows, such as the transportation of very viscous fluids 
in long pipelines (Preziosi, Chen & Joseph 1989, and references therein), its 
application to external flows being considered too costly. Both are quite clearly 
understood in their basic mechanism. 

The third method, corrugating the surface, is very appealing because of its 
completely passive nature, but its mechanism of operation is much less well 
understood, and in fact one may even wonder, a priori, why it should reduce drag at 
all. Nevertheless, the observation that such corrugations occur naturally in shark 
scales (Burdak 1969; Chernyshov & Zayets 1970) triggered the interest of fluid- 
dynamicists in such structures, and in recent years it was experimentally shown (e.g. 
Bechert, Hoppe & Reif 1985; Sawyer & Winter 1987; Choi 1987; McLean, George- 
Falvy & Sullivan 1987) that a reduction of 4-7 % compared to the drag of a smooth 
surface can indeed be achieved in turbulent flow. In addition, a qualitative 
explanation of the mechanism of drag reduction near grooved surfaces has gradually 
emerged (Bechert et al. 1985, 1986; Bechert & Bartenwerfer 1989; Baron, Quadrio & 
Vigevano 1989) : the corrugations interfere with the secondary cross-flow associated 
with the longitudinal vortices which randomly appear in the turbulent flow, and 
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FIUURE 1.  The phenomenon of drag reduction in a turbulent boundary layer, be it on shark 
skin or aeroplane wings, is produced by grooves (or riblets) interacting with the viscous 
sublayer. 

somehow manage to dampen these vortices and therefore the level of turbulence 
itself; the consequent reduction in the rate of turbulent diffusion makes for a lower 
eddy viscosity and the reduction of drag. 

Although the foregoing argument is intuitively convincing, it is only qualitative. 
However, the route to a deeper understanding of the effects of grooved surfaces is 
opened by Bechert’s observation that the typical size of corrugations which appear 
to be experimentally effective is of the same order of magnitude as the height of the 
viscous sublayer of the turbulent stream (figure 1). Within the viscous sublayer, 
convective terms in the NavierStokes equations are negligible compared to the 
viscous terms, and therefore the flow can be studied in the much simpler framework 
of the Stokes equations. Bechert & Bartenwerfer (1989) studied in this way the 
alterations to the mean longitudinal flow produced by the corrugations. They argued 
that the velocity profile, which is asymptotically linear in the adjacent shear layer, 
appears as if it originated from an equivalent plane wall located a t  a distance below 
the riblet tips which they call the ‘protrusion height ’, and were able to calculate the 
protrusion height of a number of riblet configurations for which the Laplace equation 
can be solved by conformal mapping. 

Since, for all effects concerning the mean flow of the driving shear layer, the 
corrugated wall is equivalent to a suitably positioned plane wall, the resistance to the 
main flow is not automatically increased by the corrugations, as one might at first 
be led to believe ; if the riblets do produce the effect of damping cross-flow and thus 
secondary streamwise vortices, the resistance may even be reduced, as it in practice 
is. Previous authors, however, have not quantitatively calculated the effect of the 
riblets on cross-flow. 

1.2. The unsteady viscous sublayer 
The mechanism of drag reduction by grooved surfaces outlined by Bechert and his 
collaborators relies on the influence that the corrugations have upon the unsteady 
fluctuations of the turbulent velocity field. It is therefore of the greatest importance 
to be able to describe and calculate this influence. This would be an almost hopeless 
task, at today’s state of knowledge, without the previously mentioned observation 
that the most relevant phenomena take place inside the viscous sublayer of the 
turbulent stream. One can, therefore, expect to obtain useful information from a 
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study of the influence of the grooves on the unsteady viscous sublayer, which is 
governed by the linear Stokes equations. 

In fact, an even greater simplification is possible. It occurred to one of us while 
listening to a review of the field by Baron et al. (1989) - which was a stimulus to start 
a research on this subject - that the Stokes equations for the unsteady flow in the 
viscous sublayer may be further simplified to the steady Stokes equations. The 
reason is simply that the inertia and convective terms of the Navier-Stokes 
equations are roughly of the same order of magnitude in a turbulent boundary layer, 
and therefore when the latter are negligible the former are too. We can thus delete 
time derivatives in the viscous-sublayer equations and study both mean flow and 
turbulent fluctuations by the steady (or quasi-steady, as they should more properly 
be called in such an application) Stokes equations. Of course, the fluctuating 
component will depend on time, but just because the boundary conditions for it  do. 

In further support for the assumption that useful results may be obtained while 
neglecting the time-derivative term in the Stokes equations even for the unsteady 
component of viscous-sublayer flow, we learnt from a referee, to whom we are 
indebted for his kindness, that Bechert’s group also arrived at the same conviction. 
Bechert, Bartenwerfer & Hoppe (1990), after discussing at  length the wave-like 
solutions of the unsteady Stokes equations, conclude, also on the basis of 
experimental measurements by other authors, that the frequencies typically 
encountered in turbulent flow are low enough for the viscous sublayer to be treated 
as quasi-steady. They, too, proceed to study the effects of riblets on cross-flow on the 
basis of the steady Stokes equations, and describe an analog device to obtain 
solutions of the biharmonic equation based on the deformation of an elastic thin 
plate with suitably constrained boundaries. 

Bechert et al. (1990) also describe experiments conducted with a very viscous fluid 
on enlarged riblets for the purpose of measuring the difference between the resistance 
to parallel flow and cross-flow directly. We shall discuss their results later. It is 
important to note now, however, that they do find a larger resistance to cross- than 
to parallel flow and ascribe this difference to a different protrusion height. 

1.3. Past and present results 
Summarizing the state of the art in the description of flow near grooved surface we 
can say that: 

(a)  the phenomenon of turbulent drag reduction by grooved surfaces, experi- 
mentally verified by several authors, has been qualitatively explained (Bechert 
et al. 1985; Bechert & Bartenwerfer 1989; Baron et al. 1989); 

(b )  mean longitudinal flow in the viscous sublayer has been studied quantitatively, 
and the relevant parameter, the protrusion height, has been calculated for a number 
of groove shapes (including the limit of infinitely deep grooves), analytically by 
conformal mapping and analogically by simulation in an electrolytic tank (Bechert 
et al. 1986; Bechert & Bartenwerfer 1989). 

( c )  the effect of the grooves on low-Reynolds-number steady cross-flow has been 
studied experimentally and, in the quasi-steady approximation, through an analog 
simulation realized by bending a suitably constrained elastic thin plate. The cross- 
flow protrusion height has been measured during the simulation (Bechert et al. 1990). 

This paper contains : 
(a)  a discussion of the transverse-flow problem insofar as it is relevant to the 

phenomenon of drag reduction and the mathematical definition of the transverse 
protrusion height ($82 and 3) ; 
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FIGURE 2. Schematic representation of (a )  longitudinal, mean and turbulent, 
and ( b )  transverse, turbulent, flow over a grooved surface. 

(b) the analytical solution of the transverse-flow problem in the limit of infinitely 
deep grooves and of the longitudinal- and transverse-flow problems in the limit of 
very shallow grooves (94) ; 

(c)  the development of a boundary-element computer program that calculates the 
two protrusion heights of an arbitrary groove profile and the analysis by means of 
that program of the relative performance of various groove shapes (995 and 6). 

2. Formulation of the problem 
2.1. Physical background 

The velocity profile in the boundary layer generated by flow of a fluid along a locally 
plane wall has at the wall end, where velocity is zero, a non-zero finite slope, related, 
as is well known, to the viscous shear stress in the fluid and to the friction drag acting 
on the wall itself. If one looks at  the region near the wall on a scale small compared 
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to the boundary-layer thickness an approximately linear velocity profile with 
constant slope will be seen. This is the viscous sublayer (see figure i), a region where 
the conversion of convected momentum into viscous stress is negligible with respect 
to the stress already present there, and the flow is governed mainly by the balance 
of viscous stresses. In other words, inertia and convective terms may be neglected in 
the NavierStokes equations and those equations may be reduced to the Stokes form. 

Even in a turbulent stream we may expect the velocity profile to eventually 
become linear near the wall, with a slope approximately independent of the normal 
coordinate in a viscous sublayer of thickness 

where v is the kinematic viscosity of the fluid, p its density, uy the slope of the 
velocity profile and T, the shear stress at  the wall. (The latter quantity is more easily 
measurable in a turbulent flow because the velocity gradient will generally change in 
passing from the viscous sublayer to the truly turbulent boundary layer.) Notice, 
however, that in general uy and T, will depend on time, keeping track of the 
unsteadiness of the turbulent eddies present in the boundary layer. Therefore the 
viscous sublayer, although governed by the linear and dissipative Stokes equations 
and therefore inherently stable, mirrors the time dependence of the shear layer that 
drives its motion. 

Our aim in this paper is to study how flow in the viscous sublayer, in both the 
directions parallel and normal to the corrugations (see figure 2), is modified when the 
plane wall is replaced by a corrugated wall. Mathematically, the problem may be 
stated as follows. 

2.2. Mathematical formulation 
We wish to study the Stokes flow of a viscous fluid alongside an infinite corrugated 
wall in the presence of a given shear, or velocity gradient, in the region far from the 
wall. We shall assume the wall surface to be cylindrical, that is translation-invariant 
in one direction, which we shall take as z-axis, and periodic in a second direction 
normal to the first, which will be the x-axis. The direction normal to these two will 
be the y-axis. We shall also assume for the sake of simplicity, although this is not 
strictly necessary, that the surface does not bend over itself, so that it can be 
represented by an equation of the form y = yo@) (where yo is independent of z and 
a periodic function of x). The equations we wish to solve are the Stokes equations: 

v. v =  0; v2v= p v p ,  (1) 

with conditions specifying that the three components u, v, w (respectively along the 
x-, y- and z-axes) of velocity V be zero st the surface of equation y = y,,(z), and that 
aulay and dwlay should approach a given finite limit for y going to plus infinity. 

It is easy to observe that, all quantities being independent of z, the equation for 
w decouples from the system and is just the Laplace equation 

vzw = 0 
with boundary conditions 

w[x, yo@)] = 0, wJx, 00) = const. ( 2 b )  

(figure 3a) .  Equation ( 2 a )  with conditions (2b)  is the problem that was studied by 
Bechert & Bartenwerfer (1989). 

The transverse problem for the remaining unknowns u, v and p may be 
4 FLM 228 



92 P. Luchini, F .  Manzo and A. Pozzi 

j vzw = 0 j 

V Z ~  = w 

V'W = 0 

FIQURE 3. Geometry, equations and boundary conditions for ( a )  longitudinal and ( b )  
transverse flow. 

reformulated in terms of the stream function $, defined so that 9, = u and -$z = 
v, and of the vorticity w = uy  - v,, by recasting ( 1 )  as 

VZ$ = w ,  v2w = 0, 
with boundary conditions 

(figure 3b) .  In the next section we shall see that these three conditions are indeed 
sufficient to identify a unique solution. In the meanwhile it is useful to remark that 
the two conditions stating that both $, and $y should vanish a t  the surface may be 
replaced by those that 9 itself be constant along the surface and that its directional 
derivative in any specified non-tangent direction should vanish there. 

Finally, by suitably choosing a reference length and velocity (2) and (3) can always 
be non-dimensionalized in such a way that the period of the corrugations is 2~ and 
the imposed velocity gradient a t  infinity is unity, and we shall assume so in most of 
the following. 
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3. The definition of protrusion height 

represented by a Fourier series of the form 
The general solution of (2a) that is independent of z and periodic in x can be 

m 

w = Wneinx, 
n--ca 

where W, = a,+b,y (4b) 

and Wn = a, e-lnlg + b elnlg (n =#= 0). ( 4 4  

The condition that wy+ 1 for y + +  co fixes all the b-coefficients as b, = 1 and b ,  = 
0 for n =l 0, and leaves the a-coefficients to be determined by the condition at the 
wall surface. 

Since all the coefficients of the series (4a )  but W, vanish exponentially at infinity, 
the solution obtained will approach the linear behaviour w - a, + y with exponential 
accuracy, and thus imitate the velocity profile produced by a plane wall located at  
y = -a,. Bechert’s definition of the protrusion height hl, as the distance of the riblet 
tips, which he locates at  y = 0, from this virtual origin of the velocity profile, may 
thus be rewritten as hl, = a,. 

Notice that, from the standpoint of dimensional analysis, the protrusion height is 
a length, and therefore its dimensional value depends only on the chosen reference 
length and not on the reference velocity. The ratio of the protrusion height to the 
period of the corrugations, which we shall call normalized protrusion height Ell, is a 
purely geometrical parameter depending only on the shape of the wall corrugations 
and neither on their size nor on the actual speed of the driving fluid stream. As far 
as the main flow is concerned, the corrugated wall is equivalent to a plane wall 
located at a distance below the riblet tips which is given by the normalized 
protrusion height times the period. 

We now want to show that a similar, but numerically different, protrusion height 
h, may be defined for the cross-flow as well. To this end we consider the Fourier series 
expansion of the general periodic solution of the biharmonic equation (3a) ,  i.e. 

m 

$ = C. Y,einx, 
n---a0 

where Yo = A,+B,~+C,y2+DO~3 ( 5 b )  

and ( 5 4  

The condition that $gg + 1 for y --f co fixes all the C- and D-coefficients as C, = i, 
Do = O  and C, =D, = O  for n + O ,  and leaves the A- and B-coefficients to be 
determined from the two conditions given at the wall surface. Just as in the previous 
case, the limiting behaviour $ - A ,  +Boy + +y2 is approached exponentially. The 
parallel velocity component u = $u - B, + y thus imitates the linear profile generated 
by a plane wall located at y = -Bo. The distance of the riblet tips from this virtual 
origin of the transverse velocity profile (which is different from the virtual origin of 
the longitudinal velocity profile) defines the transverse protrusion height h, = B,. 

Just as in the previous case, for all effects concerning cross-flow in the driving 
turbulent shear layer, the corrugated wall is equivalent to a plane wall located at  a 
distance below the riblet tips equal to the transverse protrusion height. If this virtual 

Yn = (A,  +Bn y) e-lnlg + (C, +D, y) elnlg (n =+ 0). 

4-2 
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FIQURE 4. Interrelations between the protrusion heights and the positions of the virtual plane 
walls seen by longitudinal and transverse flow. 

plane wall turns out to lie above the one seen by the longitudinal flow, that is if h, 
is smaller than h,, , secondary cross-flow will experience a higher viscous dissipation, 
just as if it flowed in a narrower duct, than the main longitudinal flow, and the level 
of near-wall turbulence will presumably be reduced. 

Once the two protrusion heights are defined, we arrive a t  the overall picture given 
in figure 4. The two protrusion heights represent the distances of the two virtual 
plane walls seen by the longitudinal and transverse flow respectively from the riblet 
tips. We may remark, however, that the riblet tips themselves do not hold any 
particular significance in relation to the flow, and must be considered for all purposes 
an arbitrary origin of the y-axis which has been set there just for geometrical 
convenience. It is evident that any physically significant parameter must be 
independent of the choice of the origin; the only combination of the two protrusion 
heights that has this property is their difference Ah = h,, - h, (or functions thereof), 
i.e. the distance between the two virtual plane walls seen by longitudinal and 
transverse flow. 

Ah gives a quantitative characterization of whether and how much the corrugated 
wall impedes the cross-flow more than it does the longitudinal flow, and is the only 
parameter on which the behaviour of the turbulent boundary layer may depend. 

4. Analytical results 
The problem of longitudinal flow over a wall with infinitely deep grooves (which 

reduces to an array of infinitely thin blades) was solved by Bechert 6 Bartenwerfer 
(1989) by conformal mapping. In this section we give the solution for both 
longitudinal and transverse flow over very shallow grooves of any shape, by a 
perturbation method, and the limit solution for transverse flow over infinitely deep 
grooves, by the Wiener-Hopf method. 

4.1. Series solution for shallow grooves 
If we consider a shallow wall profile of the form y = eyo(x) the solution of either (2a) 
or (3a) can be expanded in a power series in E as 

(6) 

The differential equation for each term of the series remains (2a)  or (3a) 

w = w(0) + €W(1) + E2W(2) + . . . ; $ = p) + E p  + E 2 p )  + . . . , 
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respectively, since these equations are linear. The boundary conditions for 
longitudinal flow (2 b )  after expansion give 

W(O)(X,O) = 0;  w p ( 2 , c o )  = 1, ( 7 4  
w(1)(2,0) + w r y x ,  0) yo@) = 0 ; wk"(2, co) = 0, ( 7 b )  
w(2~(2,0)+wk].)y0+~wko$ y; = 0;  wP)(2, a) = 0, (7 4 

and so on. (The expansion can be continued to all orders.) 
The solution can then be expressed, for any given wall profile yo(x), in terms of the 

Fourier series expansions of yo and w. Denoting by Yn the Fourier coefficients of the 
expansion of yo(z) (periodic of period 27c by assumption) and using the expansion of 
w given in (4) we obtain that W ( ~ ) ( Z , ~ )  = y, and 

m 

a:) = 0 .  y n  a(1) = - y  n )  . = -  C ImlYmYn-m. (8) 
m--m 

Since h,, = .ao, we can immediately write the expression of the longitudinal 
protrusion height, to second order in E ,  as 

where we made use of the fact that, yo(z) being real, Y-, = Y: (the complex 
conjugate of Ym). 

For cross-flow we proceed analogously. The boundary conditions (3 b)  after 
expansion become 

$(O)(Z, 0)  = 0 ;  $.k"'(., 0)  = 0 ;  $.k",'(., 03)  = 1 ,  (1Oa) 

$ c . k " ( x , o ) + $ ~ ~ y o + ~ $ ~ ~ ~ y ;  = 0; $Fi(2, co) = 0, (104 

@(l)(x,O)+$~)yo = 0;  $~ ' (x ,O)+$~dyo  = 0;  @r,)(x, m) = 0, (lob) 
$("(2, 0) + $-k"yo +i$-kO,, y; = 0;  

and so on. On introducing the Fourier expansions of yo and $, the latter according 
to ( 5 ) ,  the solution of (10) gives $O(x, y) = b2, and 

whence 

We note that both protrusion heights are given at  first order by the negative mean 
value of yo@) ; in other words the effective plane walls seen by longitudinal flow and 
cross-flow are both approximately located on the mean line through the corrugated 
wall. An interesting consequence is that the height difference h,, - h,  has a quadratic 
expression : 

m 

m-1 
Ah = 2s2 mlYm12. (13) 

Equation (13) gives a positive value for any wall shape yo(x), so that the effective wall 
seen by cross-flow is always located above the one seen by longitudinal flow, the 
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w, = 0 

*, = 0 

w* = 0 

*, = 0 

FIQURE 5. The infinitely-deep-groove problem. 

condition under which a greater resistance is offered to cross- than to longitudinal 
flow. On the other hand, Ah is a second-order quantity in 8,  and therefore the effect 
is very small for shallow grooves. 

4.2. The limit of injnitely deep grooves 
A wall with infinitely deep grooves may be represented as an array of parallel 
infinitely thin half-plates, or blades, the edges of which are grazed by the fluid 
stream. The solution of the longitudinal-flow problem (2) for this geometrical 
configuration can be obtained through a conformal mapping, as reported by Bechert 
& Bartenwerfer (1989). The resulting protrusion height is finite, despite the infinite 
depth of the grooves, and once normalized to the period is given by 

Ell = K-' log 2 = 0.220 635 . . . . (14) 
We shall now solve the cross-flow problem (3) for the infinite-groove wall 

configuration by the Wiener-Hopf method along the lines of Luchini (1991), where 
the Stokes flow out of an array of semi-infinite plane ducts was calculated. On 
comparing the present problem with the one considered by Luchini (1991), we notice 
that the geometrical configuration is the same but the boundary conditions are 
different : the main flow is directed perpendicular to the plates rather than coming 
out between them. 

In  order to formulate the Wiener-Hopf problem, we consider a single half-period 
of the flow, which for the scope of this section will be located in the strip 0 < x < 1 
rather than 0 < x < R .  The conditions holding a t  the boundary of a half-period follow 
from symmetry considerations and are indicated in figure 5.  

If boundary conditions of the same type were imposed for - co < y < co this 
problem could be solved by Fourier- transforming with respect to the y-coordinate. 
Indeed, on introducing the Fourier transform of I# as 

and the Fourier transform Q(x,  k) of w analogously, we can easily write the 
transformed solution of ( 3 a )  as 

Y(x,  k) = [A(k) +B(k)  x] e-kz+ [C(k) +D(k)  x] ekz. (16) 
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The two conditions YJO, k) = 0 and Q J O ,  k) = 0 select a solution that is even with 
respect to x:  

(17) 
If now, in addition to the condition $Jl, y) = 0, $(l, y) were known for all y, we 
could determine the remaining two coefficients A and B, and write 

Y(x, k) = 2A(k) cosh kx-2il?(k)xsinh kx. 

(18) 
(sinh k + k cosh k) cosh kx - kx sinh k sinh kx 

sinh k cosh k + k Y(x, k) = Y(1, k). 

In particular, QJl, k) would then be given by 

2k3 sinh2 k 
sinh k cosh k + k Qz(l, k) = - w1, k). 

In fact we do not know $(l, y) for all y. Instead we have the two conditions $(l, 
y) = 0 for - co < y < 0 and wz( 1, y) = 0 for 0 < y < co. Determining two functions 
satisfying these conditions and whose transforms are related by a h e a r  equation 
such as (19) constitutes what is called a Wiener-Hopf problem, and can be solved by 
Hilbert's factorization method. 

The key to Hilbert's method is the observation that the Fourier transform of a 
function that is zero for y < 0 is an analytic function of the complex variable k in the 
half-plane Im (k) < 0, as follows directly from its definition (15), and conversely the 
transform of a function that is zero for y > 0 is analytic in the half-plane Im (k) > 
0. Therefore what we have to do is split the coefficient of Y(1, k) in (19) in the ratio 
of two factors, one analytic in the half-plane Im (k) < 0 and the other in the half- 
plane Im (k) > 0. This factorization can be obtained by taking logarithms of both 
sides and then applying Cauchy 's formulae, which give two functions, one analytic 
in the upper and the other in the lower half-plane, whose difference is given. 

In the present case it is convenient first to factor out the fourth-order zero that the 
coefficient of (19) has in the origin. Then we can write 

1 2 sinh2 k' 
where = log [ k'(sinh k' cosh k'+ k') 

2 sinh2 k' 

(The symbol +iO (-i0) indicates that the denominator must be given a small 
positive (negative) imaginary part which is then let go to zero after calculating the 
integral. ) 

The solution of the Wiener-Hopf problem is now given by 

Qz(l, k) = -k"P(k)N(k), Y(1, k) = @P(k)D(k), 
where a-/3 = 4 and P ( k )  is an arbitrary polynomial, which must be determined from 
the behaviour at infinity and near the origin of the particular solution required. In 
the present case, no polynomial must be included if we want the singularity that the 
solution has at the origin of the y-axis (the blade tip) to be of the lowest possible 
order, and ,tl must equal - 3, since we want $ to behave as y2 for y + 00. More 
precisely, from the relations between the behaviour near zero of transforms and the 
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behaviour at infinity of the transformed functions we know that, if $ - &z for y+ 
00, Y - ik-3 for k + 0. We thus obtain 

Y(1, k) = ik-3D(k), (23) 
with D(k)  given by (22). It might be thought that (23) should be further divided by 
D(O), but in the present case we know that D(0)  = 1 because the function to be 
factored, the argument of the logarithm that appears under the integral sign in (22), 
is an even real function of k which takes the value 1 in the origin (see Luchini 1991 
for the complete argument applied to a similar case). 

Equations (22) and (23) together with (18) formally solve the problem completely. 
Although (22) still contains a convolution integral which cannot be calculated 
analytically, this integral can be calculated through numerical Fourier transforms, 
if the complete flow pattern is desired, in a manner analogous to that used by Luchini 
(1991). 

In order to calculate the cross-flow protrusion height it is sufficient to continue the 
relation between the asymptotic behaviour for y-+ cn of $ and the behaviour near 
zero of its transform to its second term. In fact, it follows from general theorems of 
the theory of Fourier and Laplace transforms that if $ - &z + h, y for y +. 00 (which 
is the definition of the protrusion height hL), then Y - ik-3-hl k-2 for k+O. 
Therefore 

where the last equality follows because D(0)  = 1. Differentiating (22) under the sign 
of integral we thus obtain 

2 sinh2 k' 
(25) 

where the symbol +iO has been omitted because the integral is actually regular (the 
logarithm vanishes as k'2 in the origin). 

The integral of (25) can easily be evaluated numerically. Once normalized to the 
period (which in this section is 2) the cross-flow protrusion height for infinitely deep 
grooves turns out to be = &hL = 0.088 565 7 . . . . 

Combining the last result with (14) finally gives = 0.132069.. . . 

5. The numerical method 
In order to calculate the two protrusion heights numerically for a general wall 

profile, we have developed a boundary-element computer code which solves the 
Laplace and the biharmonic equation in a half-plane-like domain bounded by a 
periodic wall. 

The algorithm is based on the periodic Green function, rather than the free-space 
Green function generally adopted in boundary-element method codes, so that the 
calculation may be restricted to a single period of the wall profile. 

Both wall shape and unknowns, that is the boundary values of velocity and stream 
function and their normal derivatives, are approximated by piecewise polynomials, 
and the boundary integrals appearing in Green's formula are computed by a 
Gauss-Legendre integration formula modified so as to take into account the 
logarithmic singularity of the Green function. The order of accuracy of the 
integration formula is preserved by subtracting the singular logarithmic contribution 
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FIGURE 6. Integration contour for the boundary-integral formulation. 

and integrating it analytically in the appropriate subintervals. The problem is thus 
reduced to a, nearly singular, algebraic system of N linear equations. The integral 
constraint resulting from the Neumann condition on normal derivative is handled by 
a pseudo-variational formulation which de-singularizes the system through the 
introduction of an additional unknown, and the solution is then found by direct 
Gauss elimination. The protrusion height is expressed as another boundary integral 
which is again computed by Gauss-Legendre integration. 

The biharmonic equation is solved by first reformulating the problem as two 
Laplace equations with coupled boundary conditions and then discretizing the 
boundary integrals thal; represent these two equations in the manner described 
above. The procedure involves the inversion of only one N x N matrix, in addition to 
the one already inverted in solving the Laplace equation, rather than the much 
slower inversion of a 2N x 2N matrix which would be entailed by a direct boundary- 
element formulation of the biharmonic equation in terms of its own Green function. 

5.1. The boundary-element integral equation for the Laplace equation 
All boundary-element algorithms for the Laplace equation are based on Green’s 
formula. 

( I ,  I’)  - G ( I ,  1’) - ( r )  ds, an 1 
which gives the value at  any point r‘ of a general solution f in terms of the values 
taken by f and its normal derivative on the boundary of the solution domain 
(spanned by the curvilinear abscissa 8). In (26) the Green function G is, by definition, 
any one solution of the Poisson equation V2G = 811- 1’1 ; different formulations will 
result from different choices of the Green function. 

In the present case, in which we are dealing with a periodic corrugated wall, it is 
useful to enforce periodicity directly by choosing a periodic Green function. We may 
then take a single period as solution domain and apply (26) to the contour shown in 
figure 6, formed by one period of the wall, two straight lines parallel to the y-axis, 
say x = 0 and x = 2n:, and a line joining these two a t  y = + co ; if both f and G are 
periodic the contributions to (26) from the two lines x = 0 and x = 2n: cancel each 
other and an obvious simplification ensues. A periodic solution of the Poisson 
equation suitable for this purpose may easily be determined by conformal-mapping 
techniques. More than one choice is possible; of these the simplest is probably 

G ( t ,  r’) = ( 4 ~ ) - ’  log [cash (y - y’) - cos (X - x’)]. 
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We have thus eliminated the contributions to (26) from the lateral boundaries of the 
solution domain. We can, in addition, eliminate the contribution from the line a t  
infinity if we choose a Green function which vanishes for y + co. This effect can be 
obtained by subtracting from the previous Green function its asymptotic behaviour, 
i.e. (47c)-’(y-yY’-1og2). The result is 

G( T ,  r’) = (4X)-’{l0g [2 cash (y - y’) - 2 cos (Z - d)] - y + y’}. (27 ) 

Adopting this Green function we can use (26) with the line integral extended over one 
wall period alone. We shall also find useful to have z as the integration variable along 
the wall, and therefore we rewrite (26) as 

where p,(4 = (V/W [z, yo(4l (ds/dx). 
According to  the general philosophy of boundary-element methods, we now 

particularize (28) to  y‘+y,(x‘) (with some care needed in taking the limit from the 
interior) and interpret the result as an integral equation relating the two functions 
f [z, y,(x)] and q ~ ( x ) ,  either one of which may be the unknown. 

5.2. The Gaussian-integration Galerkin procedure 
For the discretization of the integral equation we have devised a piecewise- 
polynomial technique which can be enacted at low or high orders of approximation 
with essentially the same ease. 

The two main ingredients of this technique are the representation o f f  and p, 
through piecewise polynomials and the adoption of a Gaussian integration formula 
for all the required integrals. Let the interval (0,27c) be divided into N ,  generally non- 
uniform, subintervals (xi, xi+l). I n  each subinterval we assume every unknown, say 
q ~ ,  to be represented by a polynomial of order M - 1 ,  and approximate the integral of 
this polynomial times the Green function by an M-point Gaussian formula, i.e. by the 
sum of the values taken by the integrand a t  M purposely chosen points, multiplied 
by suitable weights. The key property of Gaussian integration, which is also 
exploited in other numerical techniques such as the spectral-element method for 
partial differential equations, is that it is exact for polynomials up to order 2M- 1 ,  
so that we are effectively approximating the Green function through a polynomial of 
order M in each subinterval. At the same time, we do not need to  deal with the 
polynomial representation of p, explicitly, because we can simply adopt as variables 
the values of p, at the M Gaussian integration points in each subinterval, and never 
let the M coefficients of the polynomial appear at all. 

The discretization of (28) along the axis x’ is achieved by first recasting the 
equation in weak form, that is multiplying it by a test function T(x’) and integrating 
over (0,27c), and then discretizing this new integral in the same way as the previous 
one. Then, requiring the equation to be satisfied for T being any piecewise 
polynomial of order M -  1 over the chosen partition into N intervals gives a finite 
linear system of order MN as the discrete representation of the integral equation. 

The effect obtained through the use of Gaussian integration on a number of points 
equal to the number of coefficients of the polynomial representation of the unknowns 
is that  the procedure, although conceptually of the Galerkin type, can in practice be 
implemented as a collocation technique using the zeros of Legendre polynomials as 
collocation points, without calculating any numerical integrals at all. The property 
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of Gaussian integration of being exact for polynomials up to order 2M-1  ensures 
that the Green function is implicitly interpolated to a consistent order. 

The basic technique illustrated above, valid for a generic integral equation, must 
be modified slightly in the case of (28) because the kernel, either G or aG/an, is 
singular at x = x’, so that the possibility of representing it locally by a polynomial 
fails, and at the same time the value of the kernel for x = x’, required in the 
integration formula, is infinite. This difficulty has been eliminated by isolating the 
singular contribution to the kernel of each integral and integrating numerically the 
regular part only, and analytically the product of the singular part with the 
polynomials that represent Q, and T over the relevant subinterval. This calculation 
need be done only once, and the result, obtained at  first as a bilinear function of the 
coefficients of the polynomial representations of Q, and T, may be recast once and for 
all as a bilinear function of the values taken by these polynomials a t  the Gaussian 
points. 

5.3. Dealing with the singularity of the integral equation 
As is often the case for boundary integrals derived from the Laplace equation, the 
integral equation (28) is a singular one, in the sense that it admits a non-zero solution 
with a zero known term and conversely is not guaranteed to have finite solutions 
unless the known term satisfies a condition. When it does have a solution, this is not 
unique unless an additional condition is imposed. This behaviour, analogous to that 
of a linear system with a coefficient matrix of rank deficient by one, is a consequence 
of the well-known property of the solutions of the Laplace equation that the integral 
over a closed boundary of i3fpn must be zero. The reason why this is a complication 
is that the matrix obtained as the discrete representation of the integral equation will 
be nearly singular but, because of discretization errors, not quite so. The problem is 
then that of obtaining a solution which satisfies an additional condition, as the exact 
solution of the continuous problem does, and only approximately satisfies the nearly 
singular linear system obtained from the discretization. 

In particular, in the physical problem we are concerned with, the additional 
condition that must be satisfied by Q, corresponds to the imposition of the velocity 
gradient a t  infinity ; the contributions of the sides to the boundary integral of aw/an 
cancel each other and the contribution of infinity, where aw/ay is constant and equal 
to 1 ,  is 2x. We thus obtain the condition that 

The simplest approach to the above problem is dictated by the ordinary theory of 
rank-deficient linear systems: simply drop one of the equations (which are linearly 
dependent) and replace it by the additional condition. This operation yields a new 
non-singular system and in principle works also when, owing to discretization errors, 
the system is not exactly singular, the effect being in this case that the dropped 
equation will not be satisfied exactly. However, eliminating the singularity in this 
manner introduces an unwarranted asymmetry, since any one equation chosen to be 
dropped will correspond to a particular point on the wall which is not otherwise 
special, and in practice may be observed to yield poor results. 

A more symmetric approach, suggested by the analogy with a related variational 
problem, is to add a constant h to the right-hand side of (28) and regard h as a new 
unknown to be determined simultaneously with ~ ( x )  under the additional constraint 
(29). Doing so effectively de-singularizes the system ; for the solution is unique, owing 
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to  the explicitly imposed additional constraint, and exists for no matter which 
known term, the difference being that when the known term is compatible with the 
original equation, A turns out to be zero in the solution, whereas when the known 
term is not compatible it does not. The discretization of this modified integral 
equation yields a finite system of MN+ 1 equations (one of which is the additional 
constraint (29)) in M N + 1  unknowns (one of which is A )  which is definitely non- 
singular and may be solved by any standard method. After the solution, the smaller 
the value of A turns out to be the better the approximation of the original integral 
equation by its discretized counterpart is. 

5.4. Calculation of the longitudinal protrusion height 
In  order to apply the above technique to  problem ( 2 ) ,  longitudinal flow over a 
grooved sudace, we need only insert the boundary condition w[z, y o ( z ) ]  = 0 into (28), 
that is solve the homogeneous problem for pl under the constraint (29). Having done 
so, we can determine the longitudinal protrusion height by applying (28)  again, but 
this time in the limit for y' --+ + 00. Since G tends to  (y' - y)/27t and ?u to y' + h,, in this 
limit, we easily obtain 

which can be discretized, consistently with the other integrals, by piecewise Gaussian 
integration. 

5.5. The boundary-element formulation of the biharmonic equation 
For problem ( 3 ) ,  transverse flow, one possibility would be to set up a boundary- 
element formulation based on the Green function of the biharmonic equation, and 
thus obtain a system of 2MN equations in 2MN unknowns by imposing the two 
boundary conditions a t  the wall; however, we can instead reduce the problem to two 
coupled Laplace equations, which we can solve by the successive inversion of two 
M N x M N  matrices one of which is in common with the previous problem. It is well 
known (and very easily verified) that iff and g are harmonic functions, $ = yf+g is 
a solution of the biharmonic equation. With this substitution, boundary conditions 
(3b)  may be rewritten as 

(31 a )  y o ( 4 f  [z, Y O ( 4 l  +d"? YO(Z) l  = 0, 

af a g  yo-+-+i i . j ) f [ z ,  y , (x)]  = 0 an an 

(where A-9 is the product of the two unit vectors corresponding to the outward 
normal and the y-axis). Condition ( 3 c )  may be translated into f&, 
co) = t ,  g , ( z ,  00)  = 0 (the latter condition is actually arbitrary; 0 is assumed for 
convenience). 

Let us now assumef[z, y , (x) ]  as the main unknown. Equation (31 a)  directly gives 
us g[z, y o ( z ) ]  in terms off. On the other hand, the solution of the boundary-integral 
equation for the Laplace equation gave us the discrete representation as a matrix of 
the linear operator L relating the values on the boundary of a harmonic function and 
its normal derivative, so that 

-= af E ( f ) + & , ;  - ag = E ( g )  an an 
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FIQURE 7. Groove shapes chosen for numerical analysis : (a) cosinusoidal, (b) triangular, 
(c) parabolic. 

(with-fn0 denoting the solution of the problem with f[x, yO(z)] = 0 and f&, ao) = 1 
and L( f )  that of the problem with f [x, yO(x)] arbitrary and f&, 00) = 0). Inserting 
these expressions into (31b) we obtain 

which, in discretized form, is a linear system of order MN from which f may be 
determined. 

Once this is done, the transverse protrusion height is given by the expansion at 
infinity of f(x, y) alone (because we have imposed the condition gs/(x,  00) = 0) asf- 
& + h,. A formula analogous to (30) gives 

6. Numerical results 
6.1. Performance of the numerical algorithm 

In  order to test the performance of our algorithm, with particular regard to the use 
of higher approximations, we have considered two geometries : a cosinusoidal wall 
with a height equal to the period, and an array of parabolic grooves, again with a 
height equal to the period (shapes a and c of figure 7) .  

For the cosinusoidal profile a uniform spacing has been used. Figure 8 reports, on 
a bilogarithmic scale, the error in the calculation of h,, and h, versus the number of 
discretization points (the error being calculated with respect to a value obtained with 
a number of discretization points higher than all those appearing in the plot). 
Although the curves do not display the change in slope that one would expect in 
going from lower to higher orders of approximation, the error does decrease with 
increasing M ,  smoothly for h,, and somewhat more irregularly for h,, losing roughly 
a factor of 20 in going from M = 1 to M = 5.  

The parabolic-groove profile, with its pointed corners, constitutes a much tougher 
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FIQURE 8. Bilogarithmic plot of the error in the calculation of (a) h,, and (b) h, versus the number 
of discretization points for a cosinusoidal-groove profile. The order of approximation is denoted as 
follows:- M =  I ; - - - -  M = 2 . - - - - , M = 3 ; - . - . - - ,  M = 4;  -..-.._ , M = 5 .  

10- 

Error 

10-6 
10 MN 100 10 MN 100 

FIQURE 9. Bilogarithmic plot of the error in the calculation of (a) h,, and (b) h, versus the number 
of discretization points for a parabolic-groove profile with pointed corners. Order of approximation 
denoted as in figure 8. 

test for the numerical algorithm, because near the corners the solution is non- 
analytic and thus not representable by polynomials, but is interesting in the 
applications. Nevertheless, although larger than that obtained for the cosinusoidal 
profile, the absolute error generated in the range of, say, 50 < MN < 100 is as low as 
needed for practical applications (provided a non-uniform discretization is used with 
a much closer spacing near the corners). Figure 9 shows the errors of the 
computations performed with different values of M .  Not surprisingly, the higher 
approximations do not perform very well in this test, and in fact turn out to worsen 
slightly with increasing M .  It is interesting to  observe, however, that  in determining 
hll, M = 2 performs better than all the others, whereas in determining h,, M = 3 is 
best. Either of these two is definitely better than M = 1 and therefore to be preferred 
to a simple piecewise-constant panel approach, even in the presence of corners. 
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0' 1 

FIQURE 10. Parallel (-----) and cross (---) protrusion heights and their difference (-) 
us. depth for the cosinusoidal-groove profile. 
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FIGURE 11.  Same as figure 10 but for the triangular-groove profile. 

6.2. Analysis of the relative performance of different groove projiles 
groove geometries have been considered : sinusoidal, triangular and pa sbolic 

(figure 7), each for values of the ratio of height to period varying between zero and 
one. Figures 10-12 report the plots of the two protrusion heights and their difference 
versus the ratio of height to period s in each case. In all three cases it can be noticed 
that for s x 0 the curves of E,, and are tangent to each other while a goes to zero 
quadratically, in accordance with the results of $4.1, whereas for s+ co the three 
curves tend to the limit values calculated in $4.2. The rate at which the limit is 
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FIQURE 12. Same as figure 10 but for the parabolic-groove profile. 
S 

0.132 

0 1 

FIGURE 13. Comparative plot of the protrusion-height differences for the three groove profiles : 
(a) cosinusoidal, ( b )  triangular, (c) parabolic. 

S 

approached is, however, different. In fact, at  s = 1 the parabolic profile has already 
attained 85% of the limit value of the protrusion height difference a, whereas the 
triangular profile has attained 72 % and the sinusoidal profile only 53 %. The three 
plots of hii are reported together, for comparison, in figure 13. 

Nevertheless, all three groove profiles are bound to reach the limit for a sufficiently 
large depth ; in addition, it is interesting to observe that in all three cases the increase 
of all three parameters hll, h, and Ah is monotonic, so that, in particular, intermediate 
values higher than the limit never occur. It may also be noticed that the curve of h, 
approaches the limit and becomes flat appreciably earlier than the curve of hll, 
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appearing to indicate that parallel flow penetrates deeper into the grooves and thus 
‘sees’ the bottom longer than cross-flow. This observation is, of course, in agreement 
with the fact that the parallel protrusion height itself is larger than the transverse 
one. 

7. Conclusions 
Our main aim in undertaking this study was to substantiate quantitatively the 

intuitive notion that a grooved surface offers a greater resistance to cross- than to 
parallel flow, which underlies the generally accepted explanation of why a grooved 
surface can reduce turbulent drag. Indeed, whereas the effects of the grooved surface 
on a parallel viscous flow have been extensively studied in the past, its effects on 
cross-flow, although recently measured experimentally (Bechert et al. 1990), do not 
seem to have ever been calculated. 

Our analysis of the Stokes flow of a fluid across the grooves of the surface allows 
a quantitative characterization of the differential effect of the wall on parallel flow 
and cross-flow in terms of the difference of two protrusion heights. In fact, both 
parallel flow and cross-flow turn, at  some distance from the wall, into uniform shear 
flows, similar to those which exist in proximity of a plane wall, and the only 
remaining memory of the existence of a solid surface is in the location of the virtual 
plane wall from which the velocity profile appears to originate. Therefore, as far as 
the main stream is concerned, a corrugated wall with a thickness not exceeding that 
of the viscous sublayer is equivalent to a plane wall in a suitable position. What 
makes the corrugated wall effective in retarding cross-flow, however, is that the 
virtual plane wall seen by cross-flow is located deeper into the fluid than the one seen 
by parallel flow, thus giving rise to a greater resistance. The only parameter that 
remains in the outer stream to differentiate a corrugated from a true plane wall is just 
the distance between the two virtual plane walls, that is the difference of the two 
protrusion heights Ah. We have been able to prove that this parameter is positive for 
shallow corrugations of any shape and is again positive for infinitely deep 
corrugations ; there is numerical evidence that it is probably always positive. 

We thus have a parameter that quantitatively qualifies the effectiveness of a given 
corrugation profile in inhibiting cross-flow. Previously, in the absence of a 
quantitative calculation of cross-flow inside the viscous sublayer, the role of such a 
parameter was played by the parallel protrusion height k,, alone, that is by the 
distance between the riblet tips and the parallel virtual wall rather than between the 
two virtual walls, a choice that is equivalent to assuming that cross-flow does not 
penetrate at all below the riblet tips. Actually, our calculations show that cross-flow 
penetrates, roughly speaking, half as deep as parallel flow, at  least for sufficiently 
deep grooves. For shallow grooves we have the unforeseen result that the parallel and 
cross protrusion heights are of the same order of magnitude and their difference is 
only second order in groove depth. 

The second aim of our work was to provide a tool to calculate the above parameter, 
the protrusion height difference, for several groove shapes, and possibly optimize the 
shape with the aid of such a tool. We have developed an analytic theory of limiting 
behaviours and a numerical program that calculates the protrusion heights of 
arbitrary shapes. 

On the analytical side, we have been able to solve the limiting case of very shallow 
grooves by series expansion and the one of infinitely deep grooves by the 
Wiener-Hopf method. 
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On the numerical side, we have obtained an algorithm which can easily work a t  
high orders of approximation and, when the surface profile is smooth, offers a 
significantly better performance than an ordinary piecewise-constant-panel method 
(to which it more or less reduces for M = 1). For pointed profiles performance is not 
as good, as may easily be expected, but still M = 2 or 3 is about an order of 
magnitude better than M = 1. 

The numerical algorithm has been applied to the analysis of several groove profiles. 
The answer to the optimization problem is, however, trivial, a t  least as long as no 
external constraints are imposed : the maximum protrusion height difference for a 
given period is attained by infinitely deep grooves, the case that was analysed in 
$4.2. 

I n  general our results confirm the trend of pointed profiles providing better results, 
for equal depth, than smooth ones, in accordance with the conclusions reached by 
Bechert & Bartenwerfer (1989) on the basis of their analysis of the parallel protrusion 
height alone. Our results for the transverse protrusion height are in agreement with 
the values obtained by Bechert et al. (1990) from their elastic-plate analogy (5, = 
0.08 k 0.03 for semicircular grooves and LL = 0.075 i- 0.03 for equilateral-triangle 
grooves). 

Finally, a comment may be made on the possible rise of recirculation regions inside 
the grooves. It is well known (Moffat 1964) that such recirculation regions, and in 
fact even infinite sequences of them, can arise in Stokes flow inside corners. 
Recirculation regions have indeed been observed by Bechert et al. (1990) in their 
high-viscosity cross-flow experiment ; similar recirculation regions are present in 
numerical calculations and experimental visualizations of Stokes flow in rectangular 
cavities (Takematsu 1965; Taneda 1979) and would certainly have appeared in our 
calculations as well had we plotted the bulk behaviour of the stream function rather 
than restricting the calculation to the boundary only. However, we should be careful 
not to attach to these viscous eddies too much of the significance that is usually 
associated with high-velocity separating flows. They are the result of a linear 
phenomenon that takes place wherever velocity is so low that the Stokes equations 
are valid, and, since they are not convected with the stream, have hardly any bearing 
on the triggering mechanism of nonlinear instabilities and the overall balance of 
turbulent eddies. 

This work was funded by the Italian Ministry of Public Education. Preliminary 
versions of parts of this paper were presented a t  the X AIMETA (Associazione 
Italiana di MEccanica Teorica e Applicata) Conference, Pisa 2-5 Oct. 1990, and a t  
the IABEM-90 (International Association for Boundary-Element Methods) Sym- 
posium, Rome, 15-18 Oct. 1990. 
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